Junzhe Wu

Website: tccoin.github.io

EDUCATION

University of Michigan, Ann Arbor	Ann Arbor, MI
• M.S. in Electrical and Computer Engineering (Robotics track); GPA: 4.0/4.0 Sep Core Courses: Deep Learning for Computer Vision, Mobile Robotics, Motion Planning, Ut	o 2021 - Apr 2023 (expected) biquitous Computing.
University of Shanghai for Science and Technology (USST) B.Eng. in Industrial Electronics and Control Engineering; GPA: 3.77/4	Shanghai, China Sep 2017 - Jun 2021
Research/Project Experience	
CURLY SLAM – a new baseline for Visual SLAM Research Assistant advised by Prof. Maani Ghaffari, CURLY Lab	Jan 2022 – present
 Built a SLAM system from scratch using ROS, including an OpenCV fronten- with loop-closing. 	d, and a GTSAM backend
\circ Improved feature matching to ~100 correct matches per frame in frontend we correspondence search.	ith optical flow method and
$\circ~$ Used factor graphs and GTSAM to optimize and fuse factors like SIFT/ORB	features, IMU, and objects
• EVCS - An Enhanced Visual Checkout System for Cashierless Store • Project Leader advised by Prof. Pei Zhang	Aug 2022 – present
$\circ~$ Built an Unreal Engine simulator of a real cashier-less store to generate datas	ets
$\circ~$ Solved the problem of rare availability of public datasets and time-consuming	real simulation.
$\circ~$ Use background subtraction and feature tracking to get uncovered item image	e for classification.
Motion Planning Library Independent Developer	Sep 2021 - Dec 2021
$\circ~$ Used Pybullet to simulate manipulators and mobile robots.	
 Implemented algorithms including A*, ANA*, RRT, Kalman Filter (EKF, UF Particle Filters. 	KF, Invariant EKF) and
GoldMiner – a Lab-Developed Mobile Robot with Manipulator Project Leader, RoboVigor Robotics Lab	Sep 2019 - Sep 2020
\circ Detected bounding boxes of objects with CenterNet, then obtained 3D position	ons with depth images.
\circ Designed a Moveit controller with Gazebo simulation and a "pick and place"	workflow.
\circ Implemented 200Hz host-client communication between Nvidia Jetson TX2 as	nd STM32.
$\circ~$ Created an STM32 embedded system library "CornerStone" with RTOS to co	ontrol the robot.
CornerStone – an STM32 Embedded System Library for Robotics Project Leader, RoboVigor Robotics Lab	Jun 2018 - Sep 2019
• Encapsulated STM32 functions such as BSP, PID control, actuating, host-clie	nt communication, etc.

- Designed OOP interface with sensor pipeline architecture to separate algorithms with robot workflow.
- Distributed to 8 different robots in the lab with CI/CD tools and Git collaboration across 15 contributors.

WORK EXPERIENCE

Medtronic Inc.	Shanghai, China
Intern, Robotics Department	$Jul \ 2020 - Dec \ 2020$
• Gesture Control Manipulator for Robotic Spine Surgery:	

- $\bullet \ {\rm Modelled} \ {\rm Universal} \ {\rm Robot} \ {\rm manipulator} \ {\rm with} \ {\rm forward} \ {\rm and} \ {\rm inverse} \ {\rm kinematics}, \ {\rm reachable} \ {\rm and} \ {\rm dexterous} \ {\rm workplace}.$
- Generated obstacle avoidance trajectories for the manipulator with MoveIt in ROS.
- Implemented free-driving mode for the manipulator with millimeter-level accuracy using OnRobot force sensor.

Skills

• Language: C++, C, Python, JS/HTML/CSS, Node.js, MATLAB, English, Chinese.	
• Tool: Linux, Docker, Unreal Engine.	
• Robotics: ROS, OpenCV, Eigen, GTSAM, STM32, RTOS.	
• Machine Learning: PyTorch, TensorFlow, FCOS, Yolo, Transformer.	
Honors and Awards	
• First Prize, Shanghai Data Mining Competition for College Students	2020
• Second Prize, RoboMaster 2020 Online Assessment	2020
Grand Prize (Regional), Second Prize (Global Finals),	
• RoboMaster 2019 Robotics Competition (University Championship)	2019
• First Prize, USST Social Practice Scholarship	2018
• Champions, RoboMaster 2018 Robotics Competition (Technical Challenge)	2018
Community	
• Team Leader, RoboVigor Robotics Lab	2019-2021
• Volunteer, Google Developer Group Shanghai	2019-2020